t1

ARMv8 Cortex-A57 testing with a NVIDIA Jetson Nano Developer Kit and NVIDIA TEGRA on Ubuntu 18.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2107072-IB-T1161066526
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
NVIDIA TEGRA - ARMv8 Cortex-A57
July 06
  6 Hours, 39 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):


t1OpenBenchmarking.orgPhoronix Test Suite 10.6.1ARMv8 Cortex-A57 @ 1.48GHz (4 Cores)NVIDIA Jetson Nano Developer Kit4096MB64GB SC64GNVIDIA TEGRARealtek RTL8111/8168/8411Ubuntu 18.044.9.140-tegra (aarch64)GNOME Shell 3.28.4X Server 1.19.6GCC 7.5.0 + Clang 6.0.0-1ubuntu2 + CUDA 10.2ext43840x2400ProcessorMotherboardMemoryDiskGraphicsNetworkOSKernelDesktopDisplay ServerCompilerFile-SystemScreen ResolutionT1 BenchmarksSystem Logs- Transparent Huge Pages: always- --build=aarch64-linux-gnu --disable-libquadmath --disable-libquadmath-support --disable-werror --enable-bootstrap --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-fix-cortex-a53-843419 --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++ --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-nls --enable-plugin --enable-shared --enable-threads=posix --host=aarch64-linux-gnu --program-prefix=aarch64-linux-gnu- --target=aarch64-linux-gnu --with-default-libstdcxx-abi=new --with-gcc-major-version-only -v - Scaling Governor: tegra-cpufreq schedutil- Python 2.7.17 + Python 3.6.9

t1viennacl: CPU BLAS - sCOPYviennacl: CPU BLAS - sAXPYviennacl: CPU BLAS - sDOTviennacl: CPU BLAS - dCOPYviennacl: CPU BLAS - dAXPYviennacl: CPU BLAS - dDOTviennacl: CPU BLAS - dGEMV-Nviennacl: CPU BLAS - dGEMV-Tviennacl: CPU BLAS - dGEMM-NNviennacl: CPU BLAS - dGEMM-NTviennacl: CPU BLAS - dGEMM-TNviennacl: CPU BLAS - dGEMM-TTncnn: Vulkan GPU - mobilenetncnn: Vulkan GPU-v2-v2 - mobilenet-v2ncnn: Vulkan GPU-v3-v3 - mobilenet-v3ncnn: Vulkan GPU - shufflenet-v2ncnn: Vulkan GPU - mnasnetncnn: Vulkan GPU - efficientnet-b0ncnn: Vulkan GPU - blazefacencnn: Vulkan GPU - googlenetncnn: Vulkan GPU - vgg16ncnn: Vulkan GPU - resnet18ncnn: Vulkan GPU - alexnetncnn: Vulkan GPU - resnet50ncnn: Vulkan GPU - yolov4-tinyncnn: Vulkan GPU - squeezenet_ssdncnn: Vulkan GPU - regnety_400mNVIDIA TEGRA - ARMv8 Cortex-A579.847.896.6110.67.976.895.405.772.151.872.472.14111.0932.1529.2221.4430.7065.677.8391.27444.9381.57102.97198.84154.0383.8753.70OpenBenchmarking.org

ViennaCL

ViennaCL is an open-source linear algebra library written in C++ and with support for OpenCL and OpenMP. This test profile makes use of ViennaCL's built-in benchmarks. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - sCOPYNVIDIA TEGRA - ARMv8 Cortex-A573691215SE +/- 0.04, N = 39.841. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - sAXPYNVIDIA TEGRA - ARMv8 Cortex-A57246810SE +/- 0.04, N = 37.891. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - sDOTNVIDIA TEGRA - ARMv8 Cortex-A57246810SE +/- 0.05, N = 36.611. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dCOPYNVIDIA TEGRA - ARMv8 Cortex-A573691215SE +/- 0.00, N = 310.61. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dAXPYNVIDIA TEGRA - ARMv8 Cortex-A57246810SE +/- 0.07, N = 37.971. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dDOTNVIDIA TEGRA - ARMv8 Cortex-A57246810SE +/- 0.01, N = 36.891. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dGEMV-NNVIDIA TEGRA - ARMv8 Cortex-A571.2152.433.6454.866.075SE +/- 0.02, N = 35.401. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGB/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dGEMV-TNVIDIA TEGRA - ARMv8 Cortex-A571.29832.59663.89495.19326.4915SE +/- 0.01, N = 35.771. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGFLOPs/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dGEMM-NNNVIDIA TEGRA - ARMv8 Cortex-A570.48380.96761.45141.93522.419SE +/- 0.04, N = 32.151. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGFLOPs/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dGEMM-NTNVIDIA TEGRA - ARMv8 Cortex-A570.42080.84161.26241.68322.104SE +/- 0.01, N = 31.871. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGFLOPs/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dGEMM-TNNVIDIA TEGRA - ARMv8 Cortex-A570.55581.11161.66742.22322.779SE +/- 0.00, N = 32.471. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

OpenBenchmarking.orgGFLOPs/s, More Is BetterViennaCL 1.7.1Test: CPU BLAS - dGEMM-TTNVIDIA TEGRA - ARMv8 Cortex-A570.48150.9631.44451.9262.4075SE +/- 0.00, N = 32.141. (CXX) g++ options: -fopenmp -O3 -rdynamic -lOpenCL

NCNN

NCNN is a high performance neural network inference framework optimized for mobile and other platforms developed by Tencent. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210525Target: Vulkan GPU - Model: mobilenetNVIDIA TEGRA - ARMv8 Cortex-A5720406080100SE +/- 0.10, N = 3111.09MIN: 110.15 / MAX: 133.951. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210525Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2NVIDIA TEGRA - ARMv8 Cortex-A57714212835SE +/- 0.04, N = 332.15MIN: 31.71 / MAX: 55.761. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210525Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3NVIDIA TEGRA - ARMv8 Cortex-A57714212835SE +/- 0.04, N = 329.22MIN: 28.88 / MAX: 55.011. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210525Target: Vulkan GPU - Model: shufflenet-v2NVIDIA TEGRA - ARMv8 Cortex-A57510152025SE +/- 0.03, N = 321.44MIN: 21.06 / MAX: 27.711. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210525Target: Vulkan GPU - Model: mnasnetNVIDIA TEGRA - ARMv8 Cortex-A57714212835SE +/- 0.00, N = 330.70MIN: 30.27 / MAX: 34.941. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210525Target: Vulkan GPU - Model: efficientnet-b0NVIDIA TEGRA - ARMv8 Cortex-A571530456075SE +/- 0.07, N = 365.67MIN: 65.03 / MAX: 72.381. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210525Target: Vulkan GPU - Model: blazefaceNVIDIA TEGRA - ARMv8 Cortex-A57246810SE +/- 0.01, N = 37.83MIN: 7.64 / MAX: 9.291. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210525Target: Vulkan GPU - Model: googlenetNVIDIA TEGRA - ARMv8 Cortex-A5720406080100SE +/- 0.04, N = 391.27MIN: 90.57 / MAX: 103.841. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210525Target: Vulkan GPU - Model: vgg16NVIDIA TEGRA - ARMv8 Cortex-A57100200300400500SE +/- 0.17, N = 3444.93MIN: 440.85 / MAX: 483.421. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210525Target: Vulkan GPU - Model: resnet18NVIDIA TEGRA - ARMv8 Cortex-A5720406080100SE +/- 0.04, N = 381.57MIN: 80.9 / MAX: 88.751. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210525Target: Vulkan GPU - Model: alexnetNVIDIA TEGRA - ARMv8 Cortex-A5720406080100SE +/- 0.67, N = 3102.97MIN: 101.01 / MAX: 123.691. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210525Target: Vulkan GPU - Model: resnet50NVIDIA TEGRA - ARMv8 Cortex-A574080120160200SE +/- 0.36, N = 3198.84MIN: 197.13 / MAX: 273.391. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210525Target: Vulkan GPU - Model: yolov4-tinyNVIDIA TEGRA - ARMv8 Cortex-A57306090120150SE +/- 0.04, N = 3154.03MIN: 152.84 / MAX: 173.171. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210525Target: Vulkan GPU - Model: squeezenet_ssdNVIDIA TEGRA - ARMv8 Cortex-A5720406080100SE +/- 0.11, N = 383.87MIN: 82.79 / MAX: 93.91. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread

OpenBenchmarking.orgms, Fewer Is BetterNCNN 20210525Target: Vulkan GPU - Model: regnety_400mNVIDIA TEGRA - ARMv8 Cortex-A571224364860SE +/- 0.08, N = 353.70MIN: 53.06 / MAX: 79.491. (CXX) g++ options: -O3 -rdynamic -lgomp -lpthread -pthread