s3760330-python-01

ARMv7 rev 3 testing with a BCM2711 and llvmpipe (LLVM 9.0.1 128 bits) on Raspbian 10 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2011190-KH-S3760330P39

Jump To Table - Results


Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table
Only show results matching title/arguments (delimit multiple options with a comma):


s3760330-python-01OpenBenchmarking.orgPhoronix Test Suite 10.2.0ARMv7 rev 3 @ 1.50GHz (4 Cores)BCM27112048MB32GB SU32Gllvmpipe (LLVM 9.0.1 128 bits)Raspbian 105.4.77-v7l-gb8681a08ba16 (armv7l)X Server plymouth.ignore-serial-consolesmodesetting 1.20.43.3 Mesa 19.3.2ext41366x768ProcessorMotherboardMemoryDiskGraphicsOSKernelDisplay ServerDisplay DriverOpenGLFile-SystemScreen ResolutionS3760330-python-01 BenchmarksSystem LogsOPC Classification- snd_bcm2835.enable_compat_alsa=0 snd_bcm2835.enable_hdmi=1 - --build=arm-linux-gnueabihf --disable-libitm --disable-libquadmath --disable-libquadmath-support --disable-sjlj-exceptions --disable-werror --enable-bootstrap --enable-checking=release --enable-clocale=gnu --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++ --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-nls --enable-objc-gc=auto --enable-plugin --enable-shared --enable-threads=posix --host=arm-linux-gnueabihf --program-prefix=arm-linux-gnueabihf- --target=arm-linux-gnueabihf --with-arch=armv6 --with-default-libstdcxx-abi=new --with-float=hard --with-fpu=vfp --with-gcc-major-version-only --with-target-system-zlib -v - Scaling Governor: cpufreq-dt ondemand- Python 2.7.16.

s3760330-python-01numpy: Phoronix Test Suite v5.2.1pybench: Total For Average Test Timespyperformance: gopyperformance: 2to3pyperformance: chaospyperformance: floatpyperformance: nbodypyperformance: pathlibpyperformance: raytracepyperformance: json_loadspyperformance: crypto_pyaespyperformance: regex_compilepyperformance: python_startuppyperformance: django_templatepyperformance: pickle_pure_pythonnumenta-nab: Windowed Gaussiannumenta-nab: Earthgecko SkylineARMv7 rev 311.23131643.434.321.591.451.513586.963551.422.4696.339237.10419.254243.88OpenBenchmarking.org

Numpy Benchmark

This is a test to obtain the general Numpy performance. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgScore, More Is BetterNumpy BenchmarkPhoronix Test Suite v5.2.1ARMv7 rev 33691215SE +/- 0.02, N = 311.23

PyBench

This test profile reports the total time of the different average timed test results from PyBench. PyBench reports average test times for different functions such as BuiltinFunctionCalls and NestedForLoops, with this total result providing a rough estimate as to Python's average performance on a given system. This test profile runs PyBench each time for 20 rounds. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyBench 2018-02-16Total For Average Test TimesARMv7 rev 33K6K9K12K15KSE +/- 42.04, N = 313164

PyPerformance

PyPerformance is the reference Python performance benchmark suite. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: goARMv7 rev 30.77181.54362.31543.08723.859SE +/- 0.00, N = 33.43

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: 2to3ARMv7 rev 30.9721.9442.9163.8884.86SE +/- 0.00, N = 34.32

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: chaosARMv7 rev 30.35780.71561.07341.43121.789SE +/- 0.00, N = 31.59

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: floatARMv7 rev 30.32630.65260.97891.30521.6315SE +/- 0.00, N = 31.45

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: nbodyARMv7 rev 30.33980.67961.01941.35921.699SE +/- 0.00, N = 31.51

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: pathlibARMv7 rev 380160240320400SE +/- 0.33, N = 3358

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: raytraceARMv7 rev 3246810SE +/- 0.02, N = 36.96

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: json_loadsARMv7 rev 380160240320400SE +/- 0.33, N = 3355

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: crypto_pyaesARMv7 rev 30.31950.6390.95851.2781.5975SE +/- 0.00, N = 31.42

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: regex_compileARMv7 rev 30.55351.1071.66052.2142.7675SE +/- 0.00, N = 32.46

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: python_startupARMv7 rev 320406080100SE +/- 0.03, N = 396.33

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: django_templateARMv7 rev 32004006008001000SE +/- 1.00, N = 3923

OpenBenchmarking.orgMilliseconds, Fewer Is BetterPyPerformance 1.0.0Benchmark: pickle_pure_pythonARMv7 rev 3246810SE +/- 0.00, N = 37.10

Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) is a benchmark for evaluating algorithms for anomaly detection in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial timeseries data files plus a novel scoring mechanism designed for real-time applications. This test profile currently measures the time to run various detectors. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Windowed GaussianARMv7 rev 390180270360450SE +/- 2.01, N = 3419.25

OpenBenchmarking.orgSeconds, Fewer Is BetterNumenta Anomaly Benchmark 1.1Detector: Earthgecko SkylineARMv7 rev 39001800270036004500SE +/- 28.02, N = 34243.88


User Comments

Post A Comment