i9 10980XE oneDNN Intel Core i9-10980XE testing with a ASRock X299 Steel Legend (P1.30 BIOS) and NVIDIA NV132 11GB on Ubuntu 20.04 via the Phoronix Test Suite. Core i9 10980XE: Processor: Intel Core i9-10980XE @ 4.80GHz (18 Cores / 36 Threads), Motherboard: ASRock X299 Steel Legend (P1.30 BIOS), Chipset: Intel Sky Lake-E DMI3 Registers, Memory: 32GB, Disk: Samsung SSD 970 PRO 512GB, Graphics: NVIDIA NV132 11GB, Audio: Realtek ALC1220, Monitor: DELL P2415Q, Network: Intel I219-V + Intel I211 OS: Ubuntu 20.04, Kernel: 5.4.0-31-generic (x86_64), Desktop: GNOME Shell 3.36.1, Display Server: X Server 1.20.8, Display Driver: modesetting 1.20.8, OpenGL: 4.3 Mesa 20.0.4, Compiler: GCC 9.3.0, File-System: ext4, Screen Resolution: 3840x2160 Zstd Compression 1.4.5 Compression Level: 3 MB/s > Higher Is Better Core i9 10980XE . 4732.4 |===================================================== Zstd Compression 1.4.5 Compression Level: 19 MB/s > Higher Is Better Core i9 10980XE . 60.2 |======================================================= oneDNN 1.5 Harness: IP Batch 1D - Data Type: f32 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 5.81494 |==================================================== oneDNN 1.5 Harness: IP Batch All - Data Type: f32 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 33.63 |====================================================== oneDNN 1.5 Harness: IP Batch 1D - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 0.520544 |=================================================== oneDNN 1.5 Harness: IP Batch All - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 7.39512 |==================================================== oneDNN 1.5 Harness: IP Batch 1D - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 5.59420 |==================================================== oneDNN 1.5 Harness: IP Batch All - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 64.15 |====================================================== oneDNN 1.5 Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 9.82147 |==================================================== oneDNN 1.5 Harness: Deconvolution Batch deconv_1d - Data Type: f32 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 1.73847 |==================================================== oneDNN 1.5 Harness: Deconvolution Batch deconv_3d - Data Type: f32 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 2.67626 |==================================================== oneDNN 1.5 Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 9.29002 |==================================================== oneDNN 1.5 Harness: Deconvolution Batch deconv_1d - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 0.462452 |=================================================== oneDNN 1.5 Harness: Deconvolution Batch deconv_3d - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 0.696851 |=================================================== oneDNN 1.5 Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 168.49 |===================================================== oneDNN 1.5 Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 53.81 |====================================================== oneDNN 1.5 Harness: Convolution Batch Shapes Auto - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 8.07568 |==================================================== oneDNN 1.5 Harness: Deconvolution Batch deconv_1d - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 9.29792 |==================================================== oneDNN 1.5 Harness: Deconvolution Batch deconv_3d - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 10.89 |====================================================== oneDNN 1.5 Harness: Matrix Multiply Batch Shapes Transformer - Data Type: f32 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 1.41428 |==================================================== oneDNN 1.5 Harness: Matrix Multiply Batch Shapes Transformer - Data Type: u8s8f32 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 0.366970 |=================================================== oneDNN 1.5 Harness: Matrix Multiply Batch Shapes Transformer - Data Type: bf16bf16bf16 - Engine: CPU ms < Lower Is Better Core i9 10980XE . 1.72197 |==================================================== WireGuard + Linux Networking Stack Stress Test Seconds < Lower Is Better Core i9 10980XE . 242.35 |=====================================================