Core i9 9900KS oneAPI Intel Core i9-9900KS testing with a ASUS PRIME Z390-A (1302 BIOS) and ASUS Intel UHD 630 3GB on Ubuntu 20.04 via the Phoronix Test Suite. Core i9 9900KS: Processor: Intel Core i9-9900KS @ 5.00GHz (8 Cores / 16 Threads), Motherboard: ASUS PRIME Z390-A (1302 BIOS), Chipset: Intel Cannon Lake PCH, Memory: 16GB, Disk: Samsung SSD 970 EVO 250GB, Graphics: ASUS Intel UHD 630 3GB (1200MHz), Audio: Realtek ALC1220, Monitor: ASUS MG28U, Network: Intel I219-V OS: Ubuntu 20.04, Kernel: 5.4.0-21-generic (x86_64), Desktop: GNOME Shell 3.36.0, Display Server: X Server 1.20.7, Display Driver: modesetting 1.20.7, OpenGL: 4.6 Mesa 20.0.4, Compiler: GCC 9.3.0, File-System: ext4, Screen Resolution: 1920x1080 Embree 3.9.0 Binary: Pathtracer ISPC - Model: Crown Frames Per Second > Higher Is Better Core i9 9900KS . 12.23 |======================================================= Embree 3.9.0 Binary: Pathtracer - Model: Asian Dragon Frames Per Second > Higher Is Better Core i9 9900KS . 12.58 |======================================================= Embree 3.9.0 Binary: Pathtracer - Model: Asian Dragon Obj Frames Per Second > Higher Is Better Core i9 9900KS . 11.63 |======================================================= Embree 3.9.0 Binary: Pathtracer ISPC - Model: Asian Dragon Frames Per Second > Higher Is Better Core i9 9900KS . 14.77 |======================================================= Embree 3.9.0 Binary: Pathtracer ISPC - Model: Asian Dragon Obj Frames Per Second > Higher Is Better Core i9 9900KS . 13.17 |======================================================= oneDNN MKL-DNN 1.3 Harness: IP Batch All - Data Type: f32 ms < Lower Is Better Core i9 9900KS . 67.17 |======================================================= Embree 3.9.0 Binary: Pathtracer - Model: Crown Frames Per Second > Higher Is Better Core i9 9900KS . 10.87 |======================================================= oneDNN MKL-DNN 1.3 Harness: Deconvolution Batch deconv_3d - Data Type: u8s8f32 ms < Lower Is Better Core i9 9900KS . 3.22121 |===================================================== oneDNN MKL-DNN 1.3 Harness: Recurrent Neural Network Training - Data Type: f32 ms < Lower Is Better Core i9 9900KS . 220.61 |====================================================== oneDNN MKL-DNN 1.3 Harness: Deconvolution Batch deconv_3d - Data Type: f32 ms < Lower Is Better Core i9 9900KS . 6.47104 |===================================================== oneDNN MKL-DNN 1.3 Harness: Deconvolution Batch deconv_1d - Data Type: u8s8f32 ms < Lower Is Better Core i9 9900KS . 145.72 |====================================================== oneDNN MKL-DNN 1.3 Harness: Deconvolution Batch deconv_1d - Data Type: f32 ms < Lower Is Better Core i9 9900KS . 4.21287 |===================================================== oneDNN MKL-DNN 1.3 Harness: IP Batch All - Data Type: u8s8f32 ms < Lower Is Better Core i9 9900KS . 25.28 |======================================================= oneDNN MKL-DNN 1.3 Harness: IP Batch 1D - Data Type: u8s8f32 ms < Lower Is Better Core i9 9900KS . 1.70424 |===================================================== Intel Open Image Denoise 1.2.0 Scene: Memorial Images / Sec > Higher Is Better Core i9 9900KS . 8.18 |======================================================== oneDNN MKL-DNN 1.3 Harness: Recurrent Neural Network Inference - Data Type: f32 ms < Lower Is Better Core i9 9900KS . 33.72 |======================================================= YafaRay 3.4.1 Total Time For Sample Scene Seconds < Lower Is Better Core i9 9900KS . 157.49 |====================================================== oneDNN MKL-DNN 1.3 Harness: IP Batch 1D - Data Type: f32 ms < Lower Is Better Core i9 9900KS . 3.78757 |=====================================================